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Abstract
We study the system of two magnetic impurities described by a two-impurity Kondo model
where only the first impurity couples directly to the conduction band, while the second impurity
interacts with the first through Heisenberg exchange coupling in a ‘side-coupled’ configuration.
We consider various choices of the impurity spins (S1 < S2, S1 = S2 and S1 > S2) and we
contrast the regimes where the inter-impurity exchange coupling J is either lower or higher
than the Kondo temperature T (0)

K of the first impurity in the absence of the second. This model
is a high-spin generalization of the two-impurity model for side-coupled double quantum dots
which corresponds to the simplest S1 = S2 = 1/2 case, where the moments are Kondo-screened
successively in two stages for J < T (0)

K (the ‘two-stage Kondo effect’). We show that the
two-stage Kondo screening occurs generically for S2 � S1. For S1 � 1, the second Kondo
temperature T (2)

K is not exponentially reduced, as for S1 = 1/2, but is approximately a
power-law function of the coupling J . Furthermore, for S1 � 1 all three scales (T (0)

K , J , T (2)
K )

explicitly appear in the temperature dependence of the thermodynamic properties. For S1 > S2,
there is no second stage of screening for J < T (0)

K . However, in the opposite limit J > T (0)
K the

Kondo screening of the effective spin S1 − S2 is found.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When magnetic impurities, such as substitutional defects
in the bulk or adatoms on the surface, couple with the
conduction band electrons through an antiferromagnetic
exchange interaction, their spin is screened in the Kondo effect
and the level degeneracy is effectively lifted [1–7]. When the
separation between two such impurities is small, the impurities
interact through the RKKY interaction [8], which may lead
to critical behaviour in some parameter regimes [9, 10]. A
simplified description of such systems is the two-impurity
Kondo model [11–16]: the two magnetic atoms are represented
by quantum spin operators which are coupled by some
exchange interaction J , and each furthermore interacts with
the conduction band electrons through an effective Kondo
exchange coupling. With few exceptions [17, 18], most
studies of such models focus on spin-1/2 impurities, while
real impurities may actually have higher spins [4]. The same
may also be the case in artificial atoms, i.e. quantum dots [19],
and in molecules with embedded magnetic ions [20]. Due to

competing interactions and the vastness of the parameter space,
a great variety of different types of magnetic behaviour are
expected. In this work we discuss a sub-class of high-spin two-
impurity models in which only one of the spins (S1) couples
to the conduction band, while the second spin (S2) is ‘side-
coupled’ to the first one. Only the S1 = S2 = 1/2 limit of
this family has been studied so far [18] and some results are
known for the case of S1 = 1/2 and arbitrary S2 in the related
Anderson–Kondo model [21]. It is shown that the two-stage
Kondo screening [18, 22, 23] found in the S1 = S2 = 1/2
model is a generic feature of all S2 � S1 models, although for
S1 � 1 some qualitative differences arise.

2. Model and method

We consider the two-impurity Kondo model:

H =
∑

kσ

εkc†
kσ ckσ + JKs ·S1 + JS1 ·S2. (1)
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Operators c†
kσ create conduction band electrons with

momentum k, spin σ ∈ {↑,↓} and energy εk , while
s = {sx , sy, sz} is the spin density of the conduction band
electrons at the position of the first impurity. Operators
S1 = {S1,x , S1,y, S1,z} and S2 = {S2,x , S2,y, S2,z} are the
quantum-mechanical impurity spin operators. Furthermore, JK

is the effective Kondo exchange coupling constant and J is
the inter-impurity Heisenberg coupling constant. The models
considered are the simplest generalization of the spin-1/2 two-
impurity models for the side-coupled impurity configuration
exhibiting the two-stage Kondo effect [18, 22–24], which can
also be found in other multi-impurity problems [25, 26]. Two-
stage Kondo screening occurs when the exchange coupling
between the impurities is weaker than the energy scale of the
Kondo screening of the directly coupled impurity. In such a
situation, the moment on the first impurity is Kondo-screened
at the Kondo temperature, which corresponds to a decoupled
impurity, T (0)

K , while the moment on the second is Kondo-
screened at some exponentially reduced temperature T (2)

K . A
simple interpretation is that the second Kondo effect occurs
due to exchange coupling between the side-coupled impurity
and the Fermi liquid of heavy quasiparticles resulting from the
first stage of Kondo screening [22].

We solve the Hamiltonian using the numerical renormal-
ization group (NRG) method [27–29]. In this approach, the
continuum of the conduction band electron states is discretized
logarithmically with increasingly narrow intervals in the vicin-
ity of the Fermi level. The problem is transformed (tridiago-
nalized) to the form of a tight-binding Hamiltonian with ex-
ponentially decreasing hopping constant which is then diago-
nalized iteratively. A very effective technique to examine the
magnetic behaviour of an impurity model consists in study-
ing the thermodynamic properties of the model as a function
of the temperature [27, 28, 30]; the impurity contribution to
the entropy, Simp, then provides information on the degeneracy
of the effective spin multiplets and the impurity contribution to
the magnetic susceptibility, χimp, defines the effective magnetic
moment.

The results reported in this work have been calculated
with the discretization parameter � = 2 using improved
discretization schemes [31, 32], without the z averaging, and
with the NRG truncation cutoff set at 7ωN , where ωN is the
characteristic energy scale at the N th step of the iteration.

3. Properties of two antiferromagnetically coupled
isotropic spins

We first briefly review some properties of a decoupled pair of
magnetic impurities described as pure spins with spin quantum
numbers S1 and S2; without loss of generality, in this section
we use the convention that S2 � S1. The results will be relevant
in the discussion of the J → ∞ limit.

The impurities couple antiferromagnetically into an
effective S = S2 − S1 spin object. The inner product of spin
operators is given as

〈S1 ·S2〉 = −S1(S2 + 1). (2)

Table 1. Multiplicative factors which determine the effective Kondo
exchange coupling of the composite object made of the two spins
locked into a S = S2 − S1 antiferromagnetically aligned state.

S1 S2 r1 r2

1/2 1 −1/3 4/3
1/2 3/2 −1/4 5/4
1/2 2 −1/5 6/5
1 3/2 −2/3 5/3
1 2 −1/2 3/2
3/2 2 −1 2

The ground state multiplet can be expressed using the
Clebsch–Gordan coefficients as

|S, M〉 =
∑

m1,m2

〈S1, m1, S2, m2|S, M〉

× |S1, m1〉 ⊗ |S2, m2〉. (3)

The projections of the spin-S object on the constituent spin
operators can be easily computed as the expectation values of
the Sz,i operators in the maximum weight states |S, S〉:
p1 = 〈S, S|Sz,1|S, S〉 (4)

=
∑

m1

|〈S1, m1, S2, S2 − S1 − m1|S2 − S1, S2 − S1〉|2m1

(5)

= S1(S2 − S1)

S1 − S2 − 1
, (6)

and

p2 = 〈S, S|Sz,2|S, S〉 (7)

=
∑

m2

|〈S1, m1, S2, S2 − S1 − m1|S2 − S1, S2 − S1〉|2

× (S2 − S1 − m1) (8)

= (S1 − S2)(1 + S2)

S1 − S2 − 1
. (9)

If the Hamiltonian describing the coupling of the
impurities with the host conduction band is of the form

HC = J1S1 · s + J2S2 · s, (10)

then the coupling of the effective spin takes the following form:

H eff
C = JeffS · s, (11)

with
Jeff = r1 J1 + r2 J2, (12)

where ri = pi/(S2 − S1). The ratios ri are thus the
multiplicative factors which determine the effective Kondo
exchange coupling of the composite object; they are tabulated
in table 1. Note that the sign of r1 is always negative, while
the sign of r2 is always positive. This implies that, in the
side-coupled configuration discussed in this work, the Kondo
screening of the effective spin in the J → ∞ limit occurs
only if the impurity which couples to the conduction band is
the one with larger spin; in this case the impurity ground state
multiplet will have spin |S2 − S1| − 1/2. In the opposite case,
the exchange coupling to the conduction band is ferromagnetic
and the ground state multiplet will have spin |S2 − S1|.
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Figure 1. Thermodynamic properties of the isotropic two-impurity clusters with S1 = 1/2. We plot the impurity contribution to the magnetic
susceptibility, χimp, and the impurity contribution to the entropy, Simp. The symbols indicate fits to the universal spin-S2 Kondo magnetic
susceptibility curves, which were used to extract the J dependence of the second Kondo temperature, displayed in the bottom line of panels.

4. Results

We fix ρ JK = 0.1 throughout this work. The Kondo
temperature of a decoupled impurity is thus T (0)

K = 1.16 ×
10−5W (Wilson’s definition) and it is the same for any value of
spin S1 [33–35].

The thermodynamic properties of the system for the case
when the first spin is S1 = 1/2 are shown in figure 1.
For S2 = 1/2 we recover exactly the prototypical two-stage
Kondo screening where the second Kondo temperature is given
by [18, 22]

T (2)
K = c1T (1)

K e−c2
T

(1)
K
J , (13)

where c1 and c2 are some numerical constants; the scaling of
T (2)

K with T (0)
K /J is shown in the subfigure in the bottom panel.

For S2 � 1, we observe very similar behaviour: for
J < T (0)

K , after the initial screening of the first impurity, the
second impurity undergoes spin-S2 Kondo screening which
reduces its spin by one half-unit, as if it were coupled directly
to the conduction band. The only effect of the first impurity is
thus to induce a much lower effective bandwidth Deff ∝ T (0)

K

and increased density of states 1/ρeff ∝ T (0)
K . This picture is

confirmed by the scaling of T (2)
K with T (0)

K /J , which is very
similar for all three values of S2 in figure 1.

We now consider the case when the first spin is S1 = 1.
We remind the reader that, when a single impurity with spin
S � 1 couples to the conduction band, one half-unit of the spin
is screened in a spin-S Kondo effect, giving rise to a spin S −
1/2 composite object which couples with the conduction band
electrons with a ferromagnetic effective exchange coupling.

Thus it remains unscreened in the ground state [36–40, 34, 41].
The situation becomes more involved in the presence of an
additional impurity, see figure 2.

For S1 = 1 and S2 = 1/2, in the limit J � T (0)
K , the

two spins couple into a spin-1/2 object which couples to the
conduction band with an antiferromagnetic effective Kondo
exchange coupling Jeff = r1 J with r1 = 4/3 (see table 1)
and undergoes the usual spin-1/2 Kondo effect, which results
in fully compensated impurity spins and a non-degenerate
singlet ground state. The expression for Jeff holds strictly
only when J is much larger than any other scale in the
problem (in particular JK and the bandwidth W ); for J ≈
60JK we indeed find that the Kondo temperature is TK =
1.7 × 10−4W , which agrees with the expected scale of TK ≈
W

√
ρ J (4/3) exp{−1/[ρ J (4/3)]} ≈ 2 × 10−4W . For lower

J , the effective bandwidth is of the order of J rather than W
and thus the Kondo temperature is reduced accordingly. An
example of such behaviour is shown in figure 2 for J/T (0)

K =
100. The initial free-spin ln 6 entropy is reduced to ln 2 at
T ∼ J upon formation of the effective composite spin. This
is followed by the conventional spin-1/2 Kondo screening (see
the fit of the magnetic susceptibility with the universal Kondo
curves).

In the opposite limit J � T (0)
K we observe the initial spin-

1 Kondo screening of the first spin: the magnetic susceptibility
goes toward 1/2 and the entropy toward 2 ln 2. The screening
is, however, abruptly interrupted at T ∼ J . This can be
interpreted as the formation of a spin-singlet object composed
from the residual spin-1/2 resulting from the Kondo screening
and the side-coupled spin-1/2 impurity. The end result is the
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Figure 2. Thermodynamic properties of the two-impurity clusters with S1 = 1. For S2 = 1 and S2 = 3/2, the scaling of the second Kondo
temperature with J is shown in the bottom panels; it should be noted that the horizontal axis here corresponds to J/T (0)

K and that the scale is
logarithmic, while in figure 1 the axis corresponded to the inverse T (0)

K /J , while the scale was linear. The symbols for S2 = 1/2 and 1
correspond to fits using the universal spin-1/2 Kondo magnetic susceptibility, while the symbols for S2 = 3/2 correspond to a fit using the
universal spin-1 Kondo magnetic susceptibility.

same in both large-J and small-J limits; the crossover between
the two is smooth as a function of J .

For S1 = 1 and S2 = 1, the behaviour for J � T (0)
K is

particularly simple, since the two spins bind at the temperature
T ∼ J into a singlet and they no longer play any role. For
J � T (0)

K the Kondo screening of the S1 = 1 spin into a
residual spin-1/2 is interrupted at the temperature T ∼ J . The
residual spin-1/2 then binds with the side-coupled S2 = 1 into
a new spin-1/2 composite object. Unlike the residual spin-
1/2 resulting from the incomplete screening of a spin-1 Kondo
impurity, which remains uncompensated since it couples to
the conduction band ferromagnetically, the spin-1/2 composite
object that emerges in this case couples with the conduction
band antiferromagnetically. Thus at some lower temperature
which we again denote T (2)

K it is compensated in a spin-1/2
Kondo effect. This thus constitutes a non-trivial generalization
of the two-stage Kondo screening phenomenology encountered
in the S1 = 1/2 cases. The differences, however, are
notable: (1) there are not two, but three, energy scales: T (0)

K ,
where the spin-1 Kondo screening takes place, J , where this
screening is abruptly interrupted, and T (2)

K , where the second
Kondo screening occurs; and (2) the scaling of the second
Kondo temperature T (2)

K is not exponential with 1/J . In
the conventional two-stage Kondo effect with S1 = 1/2,
the only role of the coupling J is to set the lower Kondo
temperature; no feature is observed there in the thermodynamic
properties of the system at T ∼ J . Here, the coupling J
is essential to produce a composite spin object which then

couples antiferromagnetically with the rest of the system. Thus
this scale is directly observable as a sharp change in the
effective impurity degrees of freedom at T ∼ J . The second
Kondo temperature is defined by a power law with the exponent
near 3, with some corrections (see the lower panels in figure 2).

For S1 = 1 and S2 = 3/2 the results for J � T (0)
K

are trivial: at the temperature T ∼ J , the spins lock into
a spin-1/2 object which couples ferromagnetically with the
conduction band; thus the composite spin remains unscreened.
This is in accord with the expected behaviour in this limit
(see section 3). For J � T (0)

K the results are, however,
very intriguing: the Kondo screening of the S1 = 1 spin
is interrupted at the temperature T ∼ J . At this point,
the residual spin-1/2 couples antiferromagnetically with the
S2 = 3/2 spin into a spin-1 composite object. This composite
object, interestingly, couples antiferromagnetically with the
conduction band electrons, which leads to Kondo screening
of one half-unit of spin at some lower temperature which we
denote, yet again, as T (2)

K . The final residual spin-1/2 is
not compensated, since it couples ferromagnetically with the
conduction band. Thus we again observe a two-stage Kondo
effect of the same universality class as in the S1 = S2 = 1
case. This result may, in fact, be generalized: for any S2 � S1,
the impurity spins will be compensated for in two screening
stages (the compensation is only partial for S2 �= S1).

To further substantiate the claim that the results are
generic, we show in figure 3 the results for the S1 = 3/2
case. For S2 = 1/2 and 1, i.e. for S2 < S1, we again

4
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Figure 3. Thermodynamic properties of the two-impurity clusters with S1 = 3/2. For S2 = 1/2, the Kondo screening in the large-J limit is of
the spin-1 type, while for S2 = 1 the Kondo screening in the same limit is of the spin-1/2 type. For S2 = 3/2, the second-stage Kondo
screening in the small-J limit is of the spin-1/2 type, while for S2 = 2 it is of the spin-1 type.

find the emergence of the Kondo screening of the rigidly
antiferromagnetically bound S2 − S1 spin in the large-J limit
and the formation of a S = (S2 − 1/2) − S1 bound state
at T ∼ J in the small-J limit. Furthermore, in the case of
S2 � S1, the two-stage Kondo screening is again observed in
the small-J limit, again with the power-law dependence of T (2)

K
on J .

5. Discussion and conclusion

We have shown that, when a second impurity is side-coupled to
a Kondo impurity with sufficiently small Heisenberg coupling
J , the spin will be screened in two stages for all systems,
where the spin of the side-coupled impurity S2 is equal to or
greater than the spin of the directly coupled one, S1. When
S1 = 1/2, the second Kondo temperature is exponentially
reduced, while for S1 � 1, it is a power-law function of
the coupling J . The difference stems from the fact that, for
S1 = 1/2, the second stage of the Kondo screening occurs
with a local spin S2 which interacts with a Fermi liquid of
heavy electrons resulting from the first screening stage, while
for S1 � 1 the first screening stage leaves behind a residual
uncompensated spin S1 − 1/2, which is an extended object.
This residual spin then rigidly binds with the spin of the
side-coupled impurity at the temperature scale of T ≈ J to
produce a new extended spin object which then undergoes
Kondo screening. Similar behaviour is found in the anisotropic
single-impurity Kondo model, where an easy-plane anisotropy
leads to a formation of an extended effective spin-1/2 degree
of freedom which is Kondo-screened [35]; in this problem,
the second Kondo temperature is a power-law function of the
longitudinal magnetic anisotropy constant D. No theory has
been devised yet to map this class of problems with effective
extended spin degrees of freedom onto the conventional Kondo
model with a localized spin operator. Thus there is at
present no analytical account of these power-law dependences.
Nevertheless, it is clear that a power-law dependence of the

second Kondo temperature, i.e. T (2)
K ∝ exp(−1/ρeff Jeff) ∝

J α, implies an inverse logarithmic dependence of the effective
impurity parameters, i.e. ρeff Jeff ∝ −1/ ln J . This form
is suggestive of the energy dependence of the renormalized
ferromagnetic exchange coupling of the residual spin in the
underscreened Kondo model, J̃ (ω) = 1/ ln(ω/T0), where
T0 is some low energy scale [39]. This indicates that the
ferromagnetic residual coupling might play a decisive role
in determining the total effective antiferromagnetic exchange
coupling of the composite spin object. In this scenario, the
bare parameter J leads to the emergence of the composite spin
object by antiferromagnetic binding of the residual spin with
the side-coupled impurity spin, which occurs on the energy
scale of ω = J , while the coupling of this object with the
surrounding electron liquid is controlled solely by J̃ (ω =
J ) = 1/ ln(J/T0). This may be explained by the fact that the
side-coupled impurity interacts with the electron liquid only
indirectly through the first impurity and that the sign of the
relevant multiplicative factor r1 is always negative (see table 1).
Thus the sign of the effective exchange interaction is flipped.

In conclusion it may also be remarked that a common
feature of all models considered in this work is that the ground
state in no way depends on the J/T (0)

K ratio; for any non-zero
Heisenberg coupling between the impurities we always end up
in the same fixed point, only the temperature dependence of
the spin compensation differs greatly. This no longer holds for
problems with additional magnetic anisotropy terms (i.e. two-
impurity extensions of models studied in [35, 42]), where level
crossings may also occur as a function of J . This behaviour
will be addressed in future works.
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References

[1] Hewson A C 1993 The Kondo Problem to Heavy-Fermions
(Cambridge: Cambridge University Press)

[2] Anderson P W 1970 A poor man’s derivation of scaling laws
for the Kondo problem J. Phys. C: Solid State Phys. 3 2436

[3] Nozières P 1974 Fermi-liquid description of Kondo problem at
low temperatures J. Low Temp. Phys. 17 31

[4] Nozières P and Blandin A 1980 Kondo effect in real metals
J. Physique 41 193

[5] Andrei N, Furuya K and Lowenstein J H 1983 Solution of the
Kondo problem Rev. Mod. Phys. 55 331

[6] Tsvelick A M and Wiegmann P B 1983 Exact results in the
theory of magnetic alloys Adv. Phys. 32 453

[7] Gunnarsson O and Schönhammer K 1983 Photoemission from
Ce compounds: exact model calculation in the limit of large
degeneracy Phys. Rev. Lett. 50 604

[8] Ruderman M A and Kittel C 1954 Indirect exchange coupling
of nuclear magnetic moments by conduction electrons Phys.
Rev. 96 99

[9] Jones B A and Varma C M 1989 Critical point in the solution of
the two magnetic impurity problem Phys. Rev. B 40 324

[10] Affleck I and Ludwig A W W 1992 Exact critical theory of the
two-impurity Kondo model Phys. Rev. Lett. 68 1046

[11] Jayaprakash C, Krishna-murthy H R and Wilkins J W 1981
Two-impurity Kondo problem Phys. Rev. Lett. 47 737

[12] Jones B A and Varma C M 1987 Study of two magnetic
impurities in a Fermi gas Phys. Rev. Lett. 58 843

[13] Jones B A, Varma C M and Wilkins J W 1988 Low-temperature
properties of the two-impurity Kondo Hamiltonian Phys.
Rev. Lett. 61 125

[14] Jones B A, Kotliar B G and Millis A J 1989 Mean-field analysis
of two antiferromagnetically coupled Anderson impurities
Phys. Rev. B 39 3415

[15] Sakai O and Shimizu Y 1992 Excitation spectra of two
impurity Anderson model. i. Critical transition in the two
magnetic impurity problem and the roles of the parity
splitting J. Phys. Soc. Japan 61 2333

[16] Silva J B, Lima W L C, Oliveira W C, Mello J L N,
Oliveira L N and Wilkins J W 1996 Particle–hole asymmetry
in the two-impurity Kondo model Phys. Rev. Lett. 76 275

[17] Le Hur K and Coqblin B 1997 Underscreened Kondo effect: a
two s = 1 impurity model Phys. Rev. B 56 668

[18] Vojta M, Bulla R and Hofstetter W 2002 Quantum phase
transitions in models of coupled magnetic impurities Phys.
Rev. B 65 140405(R)

[19] Sasaki S, de Franceschi S, Elzerman J M, van der Wiel W G,
Eto M, Tarucha S and Kouwenhoven L P 2000 Kondo effect
in an integer-spin quantum dot Nature 405 764

[20] Tsukahara N, Noto K, Ohara M, Shiraki S, Takagi N, Takata Y,
Miyawaki J, Taguchi M, Chainani A, Shin S and
Kawai M 2009 Adsorption-induced switching of magnetic
anisotropy in a single iron(ii) phthalocyanine molecule on an
oxidized Cu(110) surface Phys. Rev. Lett. 102 167203

[21] Peters R and Pruschke T 2006 Relevance of quantum
fluctuations in the Anderson–Kondo model New J. Phys.
8 127

[22] Cornaglia P S and Grempel D R 2005 Strongly correlated
regimes in a double quantum dot device Phys. Rev. B
71 075305
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